PI et CKPLAN

PI et CKPLAN

Bienvenue

“The methods of theoretical physics should be applicable to all those branches of thought in which the essential features are expressible with numbers.”

Paul Dirac ((from the speech at the Nobel Banquet in Stockholm, December 10, 1933)


"l'univers est nombre."
"l'univers est écrit en langage mathématique. " Galilée
Le nombre porte en lui sa dimension temporelle ET matérielle.



R.G.U. : Réalité Générale de l'Univers



et

le temps .






Et Dieu créa le nombre, comme mesure du temps, l'homme le chiffre.

Constante arithmétique (Cf constante cosmologique) :
CKPLAN=5,55382562855700000E-17



"13 chiffres significatifs, somme 66 "











Me signaler par E-Mail , ou au tel , les inepties, ou erreurs ou imprécisions, banalités, ouverture de portes ouvertes, en faisant référence au message ECRIT ou vous n’êtes pas d'accord ou dans le doute, ou dans la compréhension , et non pas à des considérations philosophiques ou littéraires, générales .



CARPE DIEM.



Rendons grâce à Dieu.


Suivez les mises à jour en inscrivant votre e-mail :

mardi 7 février 2023

Nombre pentagonal

 

Nombre pentagonal

Représentation des quatre premiers nombres pentagonaux : la représentation du n-ième s'obtient en entourant la précédente d'un pentagone comportant 3n – 2 nouveaux points.
Les quatre premiers nombres pentagonaux sont
1, 1 + 4 = 5, 5 + 7 = 12 et 12 + 10 = 22.

En mathématiques, un nombre pentagonal est un nombre figuré qui peut être représenté par un pentagone. Pour tout entier n ≥ 1, d'après les formules générales pour les nombres polygonaux, le n-ième nombre pentagonal est donc la somme des n premiers termes de la suite arithmétique de premier terme 1 et de raison 31 :

soit le tiers du (3n – 1)-ième nombre triangulaire et les dix premiers sont 15122235517092117 et 145 (suite A000326 de l'OEIS).

Les nombres pentagonaux sont importants dans la théorie des partitions d'entiers d'Euler et interviennent par exemple dans son théorème des nombres pentagonaux.

Test des nombres pentagonaux[modifier | modifier le code]

Un réel positif x est pentagonal si et seulement si l'équation du second degré 3n2 – n – 2x possède une solution entière n > 0, c'est-à-dire si le réel suivant est entier :

Lorsque n est entier, x est le n-ième nombre pentagonal.

Nombres pentagonaux généralisés[modifier | modifier le code]

Les nombres pentagonaux généralisés sont les nombres de la forme n(3n – 1)/2, mais avec n entier relatif, ou encore : les nombres de la forme n(3n ± 1)/2 avec n entier naturel. Les vingt premiers termes de cette suite d'entiers sont 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126 et 145 (suite A001318 de l'OEIS).

Aucun commentaire:

Bases de numération

From: To:
Result:
UnitConversion.org - the ultimate unit conversion resource.