PI et CKPLAN

PI et CKPLAN

Bienvenue

“The methods of theoretical physics should be applicable to all those branches of thought in which the essential features are expressible with numbers.”

Paul Dirac ((from the speech at the Nobel Banquet in Stockholm, December 10, 1933)


"l'univers est nombre."
"l'univers est écrit en langage mathématique. " Galilée
Le nombre porte en lui sa dimension temporelle ET matérielle.



R.G.U. : Réalité Générale de l'Univers



et

le temps .






Et Dieu créa le nombre, comme mesure du temps, l'homme le chiffre.

Constante arithmétique (Cf constante cosmologique) :
CKPLAN=5,55382562855700000E-17



"13 chiffres significatifs, somme 66 "











Me signaler par E-Mail , ou au tel , les inepties, ou erreurs ou imprécisions, banalités, ouverture de portes ouvertes, en faisant référence au message ECRIT ou vous n’êtes pas d'accord ou dans le doute, ou dans la compréhension , et non pas à des considérations philosophiques ou littéraires, générales .



CARPE DIEM.



Rendons grâce à Dieu.


Suivez les mises à jour en inscrivant votre e-mail :

lundi 19 août 2019

Nombre de Kaprekar

n-nombre de Kaprekar[modifier | modifier le code]

Soient et deux entiers. On dit qu'un entier est un -nombre de Kaprekar en base s'il existe deux entiers naturels et tels que :
Les 30 premiers[1] nombres de Kaprekar en base dix sont :
1, 9, 45, 55, 99, 297, 703, 999, 2 223, 2 728, 4 879, 4 950, 5 050, 5 292, 7 272, 7 777, 9 999, 17 344, 22 222, 38 962, 77 778, 82 656, 95 121, 99 999, 142 857, 148 149, 181 819, 187 110, 208 495 et 318 682.
Dans l'inventaire que fait Kaprekar en 1980[2], il oublie étonnamment tous les nombres de la forme ainsi que les nombres 181 819 et 818 181. L'oubli est rectifié en 1981 par Mannis Charosh[3], qui met au point une méthode de génération de grands nombres de Kaprekar.
En 2000, Douglas Iannucci[4] démontre que les n-nombres de Kaprekar en base dix sont en bijection avec les diviseurs unitaires de et montre comment les obtenir à partir de la décomposition en facteurs premiers de . Il démontre en outre que si k est un n-nombre de Kaprekar, il en est de même de .

https://fr.wikipedia.org/wiki/Nombre_de_Kaprekar

Aucun commentaire:

Bases de numération

From: To:
Result:
UnitConversion.org - the ultimate unit conversion resource.