L'inverse d'un nombre premier, noté 1/p possède un développement décimal périodique dont la longueur de la période est notée δ(p)
Ceci exclut les nombres premiers 2 et 5 dont l'inverse ne possède pas de développement décimal périodique
Tableau des nombres premiers dont δp <101[modifier | modifier le code]
23, 4093, 8779 ..... En mathématiques, le théorème de Midy, dû au mathématicien français Étienne Midy[1],[2], est un énoncé concernant le développement décimal périodique d'une fraction ap (comprise, sans perte de généralité, entre 0 et 1), où p est un nombre premier (différent de 2 et 5) tel que la période soit paire. Une telle fraction s'écrit |
Aucun commentaire:
Enregistrer un commentaire