PI et CKPLAN

PI et CKPLAN

Bienvenue

“The methods of theoretical physics should be applicable to all those branches of thought in which the essential features are expressible with numbers.”

Paul Dirac ((from the speech at the Nobel Banquet in Stockholm, December 10, 1933)


"l'univers est nombre."
"l'univers est écrit en langage mathématique. " Galilée
Le nombre porte en lui sa dimension temporelle ET matérielle.



R.G.U. : Réalité Générale de l'Univers



et

le temps .






Et Dieu créa le nombre, comme mesure du temps, l'homme le chiffre.

Constante arithmétique (Cf constante cosmologique) :
CKPLAN=5,55382562855700000E-17



"13 chiffres significatifs, somme 66 "











Me signaler par E-Mail , ou au tel , les inepties, ou erreurs ou imprécisions, banalités, ouverture de portes ouvertes, en faisant référence au message ECRIT ou vous n’êtes pas d'accord ou dans le doute, ou dans la compréhension , et non pas à des considérations philosophiques ou littéraires, générales .



CARPE DIEM.



Rendons grâce à Dieu.


Suivez les mises à jour en inscrivant votre e-mail :

samedi 3 septembre 2016

suites

1+3+5+..+(2n-1)= n2
durée
13+23+..+n3=[n(n+1)/2]2
matière , contenu

u(n)=n2(n+1)/2 et v(n)=n2(n-1)/2.
On a u(n)-v(n)=n2 et u(n)+v(n)=n3

On considère la somme des nombres impairs (2k-1) pour k allant de v(n)+1 à u(n).
 Cette somme s'écrit:
(2*v(n)+1)+...+(2*u(n)-1).
Il y a u(n)-v(n)=n2 termes et la moyenne entre le premier et le dernier est u(n)+v(n)=n3.
 La somme est donc égale à: n3*n2= n5.

1=15

5+7+9+11=25 (4 termes)

19+..+35=35 (9 termes)

49+51+..+79=45 (16 termes)

101+103+..+149=55 (25 termes)


La source de cette question est une note du professeur Etienne Midy dans les Nouvelles annales de mathématiques (tome 5, 1846, pp. 640-646). (Numérisé). La même année à l'Académie des sciences, il y a plusieurs notes à ce sujet. Mais ce résultat sur la suite des impairs est très ancien. Dans l'Encyclopédie méthodique [Mathématiques, tome II, 197-199, publié en 1785], Jean-Joseph Rallier des Ourmes (1701-1771) écrit (dans la langue de l'époque):

"Si l'on conçoit les nombres impairs rangés par ordre à la fuite l'un de l'autre, il réfulte une progression arithmétique indéfinie, dont le premier terme eft 1, & la différence 2: c'eft ce qu'on nomme la fuite des impairs.

Cette fuite a une propriété remarquable relative à la formation des puiffances; mais qui n'a jufqu'ici, du moins que nous fachions, été connue ni développée qu'en partie. La voici dans toute fon étendue.

A toute puissance numérique d'une racine r & d'un exposant e quelconques, répond, dans la fuite générale des impairs, une fuite fubalterne des termes consécutifs, dont la fomme eft cette puiffance même.


Il s'agit d'en déterminer généralement le premier terme p, & le nombre de termes n."

                     

Aucun commentaire:

Bases de numération

From: To:
Result:
UnitConversion.org - the ultimate unit conversion resource.