Le platonisme mathématique ou « réalisme en mathématiques » est une théorie épistémologique selon laquelle les entités mathématiques (nombres, figures géométriques, etc.) ont une existence indépendante. Ce ne sont pas de vulgaires abstractions tirées du monde sensible (connu par les sens), ni de pures conventions, ni de simples instruments, mais des êtres jouissant d'une vie propre, comme les Idées de Platon ou même comme les êtres physiques.
Platon dans son enseignement oral (vers 350 av. J.-C. ?) :
« Outre les choses sensibles et les Idées, Platon admet qu'il existe les Choses mathématiques [Nombres, Lignes, Surfaces, Solides], qui sont des réalités intermédiaires (metaxu), différentes, d'une part, des Choses sensibles, en ce qu'elles sont éternelles et immobiles, et, d'autre part, des Idées, en ce qu'elles sont une pluralité d'exemplaires semblables, tandis que l'Idée est en elle-même une réalité une, individuelle et singulière. »
— Aristote, Métaphysique, A, 6 ; B 1 ; K, 1 ; M, 1)
« Je vous ferais bondir, si j'osais vous avouer que je n'admets aucune solution de continuité, aucune coupure entre les mathématiques et la physique, et que les nombres entiers me semblent exister en dehors de nous et en s'imposant avec la même nécessité, la même fatalité que le sodium, le potassium, etc. »
— Correspondance avec Stieltjes, janv. 1889, Paris, éd. Gauthier-Villars, 1905, t. I, p. 332
« La réalité inhérente aux théories mathématiques leur vient de ce qu'elles participent à une réalité idéale qui est dominatrice par rapport à la mathématique, mais qui n'est connaissable qu'à travers elle. »
— Communication au IXe Congrès international de philosophie, Paris, 1937, VI, p. 143. Actualités, n° 535, 1937
Aucun commentaire:
Enregistrer un commentaire